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ABSTRACT

The present study was undertaken in an effort to im-
prove numerical models for meso-scale and small-scale effects
which influence global weather and its modification. Two
major areas are being studied: the effects of mountain
ranges on energy and momentum transfer, and the transient
interaction of solar radiation with the earth's atmosphere.
It is hoped that the results of these studies will lead to
calculationally inexpensive prescriptions which can be in-
corporated into meso-scale and global-scale atmospheric cir-
culation codes.
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NOMENCLATURE for SECTIONS 2-4

ut

AXx

specific heat at constant pressure
drag force on the obstacle

: o0 . OuU _9v
fluid vorticity 53 - 5%

advective flux across a boundary
acceleration of gravity

dry adiabatic lapse rate = g/Cp

enthalpy

maximum value of the grid indice i
maximum value of the grid indice j
numerical grid indices -

temperature diffusion constant
viscous diffusion constant

latent heat of vaporization for water

cloud water content
rain water content
water production terms

pressure

3SR-795

compressibility stream function defined in

Eq. (3.14)
stream function
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total water content

water contained as cloud moisture and vapor

~gas constant for air

relative humidity
density
static stahility

entropy

. temperature

time

terminal velocity of water droplet in atmosphere

iu + kw = total velocity
total horizontal velocity
vertical velocity

horizontal Cartesian coordinate

vertical Cartesian coordinate

compressibility vorticity function

0w - L(ow)
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SUPERSCRIPTS

perturbation quantity
defined by Eq. (3.24)

time step index

SUBSCRIPTS

~diameter of water droplet

numerical grid indices

injitial spatial distribution (sometimes used
to indicate a ground level value)
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NOMENCLATURE for SECTION 5

density

pressure

temperature

vertical coordinate

frequency

wavelength

unit vector

spherical angular coordinates defining ol
cos®

specific intensity of radiation
radiation source function

volume extinction coefficient
volume absorption coefficient

a, corrected for stimulated emission
volume scattering coefficient
Planck function

scattering phase function

Planck's constant
Boltzmann's constant

scattering angle

coses
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NOMENCLATURE for SECTION 5, contd.

azimuthal average of Iv

azimuthal average of Pv
radiation energy density

a-component of radiation energy flux
aB-component of radiation pressure tensor

specific heat of air at constant pressure

frequency-integrated vertical flux

Rayleigh volume scattering coefficient
Mie volume scattering coefficient
Rayleigh phase function

Mie phase function

index of refraction of air at 760 mm Hg and 15°C

number density of air molecules

number density of air molecules at 760 mm Hg and

15°C

depolarization factor for Rayleigh scattering

Mie scattering functions

radius of (spherical) aerosol particle
complex indox of refraction

probability distribution of aerosol radii
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NOMENCLATURE for SECTION 5, contd.

number density of aerosols

extinction cross section of a spherical particle
scattering cross section of a spherical particle
absorption cross section of a spherical particle
solar intensity

directional-hemispherical reflectivity
bidirectional reflectivity

azimuthal average of o,

directional emissivity

ground (surface) temperature
solar-beam part of T;

diffuse part of T;

frequency-averaged f;

a(vi + vi+1) = center of frequency interval
WV3sV541)

B, B, P, evaluated at Ui

transmission function

scattering source

frequency-averaged scattering source

moments of P, .
g xi
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1. INTRODUCTION

The numerical prediction of the general circulation
of the atmosphere predates most of the other applications of
high-speed computers to physical problems. The codes which
exist at several major research centers have reached levels
of considerable sophistication. These codes are used to
solve time-dependent equations describing atmospheric motion
in a three-dimensional representation. Parametric descrip-
tions are included to take into account the effects of inso-
lation, turbulent transport, and .cisture. For the applica-
tion to short period forecasts (covering a time interval of
several days), the physical processes taken into account in
the codes are quite satisfactory, relying on the kinetic and
internal energy already in the atmosphere and depending less
on the utilization of the energy source from insolation.

For predictions over a longer period of time the pro-
cesses which transform the solar energy into motion of the
atmosphere are much more important. The many phenomena which
affect transfer of energy and moisture through the earth-
ocean-atmosphere system are incompletely described. Descrip-
tions of the ocean-air, air-land, and land-ocean interfaces,
and of the topographic boundary conditions are necessary for
a qualitatively correct predictive model.

1.1 OROGRAPHIC EFFECTS ON GLOBAL CLIMATE

Phenomena taking place on a scale smaller than the
resolution of global circulation codes can cause changes in
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climate. The tropospheric transport coefficients that are
required in the global atmospheric model may arise from at-
mospheric motions that occur in quite small regions (e.g.,
mountain lee waves). Transport is also effected by convec-
tive eddies such as cumulus and cumulo-nimbus convective
cells. These may be influenced by small geographic features
such as islands and by upper atmospheric phenomena such as
jet streams and waves. '

The simplest method of accounting for meso-scale phe-
nomena is to calculate parameters (such as eddy diffusivities)
according to some fit to experimental data, risking large
inaccuracies due to incomplete and inappropriate data. A
technique which can give more accuracy is to compute these
parameters by means of several meso-scale calculations per-
formed separately, or concurrently with the large scale cal-
culation. This permits a more complete description of rele-
vant physical processes to be built into the global model.

Present research at Systems, Science and Software (S*)
concerns the development of a meso-scale code capable of
¢ tudying these phenomena and in presenting calculational re-
sults which may be incorporated into global scale codes. The
basic code, as discussed in this report, is a two-dimensional
time-dependent code which makes use of the Boussinesq approx-
imation. The code is described in Section 2. Several test
calculations have been completed which show the transient
effects on the air flow over mountain ranges under various
atmospheric conditions. These results are described in
Sectiori 4. The momentum tranSpbrt from the atmosphere to the
earth is calculated for two cases and these results are also
discussed.

Modifications to the code, reported in Section 3,
include the effects of moisture, variable zoning ir: the
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vertical direction in order to better describe the atmospheric
conditions (i.e., inversion layers, etc.) and consideration of
the compressibility effects of the atmosphere. The results of
test calculations using these new codes will be reported in
the Zinal report of this contract.

1.2 RADIATIVE TRANSFER IN CLIMATOLOGY

To quantify the sources and sinks of energy in the
atmosphere due to solar and terrestrial radiation as a func-
tion of location, season, and time is a central problem in
predictive climatology. Radiation is the source which strong-
ly influences the level of response for all other parts of
the system. A number of parameters depend sensitively on the
solar radiation: humidity, cloudiness, extent of snow and
ice, etc.,, and, in turn, the amount of solar radiation heat-
ing the air and land depends on them,

Because of the intrinsic difficulty of the radiative
transfer calculation, very substantial approximations have
been made in the descriptions of radiative effects in all
atmospheric codes. Most calculations of atmospheric radiation
have been limited to approximations of long-wave cooling.

Only a few transient calculations have been performed and the
radiative response of the lower boundary of the atmosphere has
been very crudely approximated or ignored.

The development to date of a one-dimensional radiative
transfer code which will take into account the time-dependent
modifications in the thermal stratification of the atmosphere
is described in Section 5. A one-dimensional boundary layer
code which describes the basic hydrodynamics of the air flow
and which will be used to test the radiative transfer code is
also described. The radiative transfer code will be capable
of characterizing the transfer through an atmosphere described
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by temperature, pressure, humidity, CO2 concentration, 03 con-
centration, and concentrations of other trace constituents
including aerosols.

In summary, the two major areas under investigation
are (1) the effects of mountain ranges on energy and momentum
transfer, and (2) the transient interaction of solar radiation
with the earth's atmosphere. The development of numerical
models to study these phenomena is described in Sections 2,

3, and 5 of this report. A sixth section, describing addi-
tional objectives to be pursued in connection with these in-
vestigations is also included.
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2. OROGRAPHIC EFFECTS

The effects of mountain ranges on atmospheric trans-
port is being investigated using a two-dimensional numerical
code HAIFA (Hydrodynamics in an Almost Incompressible Flow
Approximation). This code calculates time-dependent dynamic
flow based on the Boussinesq approximation. The description
of the basic code is contained in this section. The modifi-
cations to this code to incorporate the effects of moisture
and compressibility are discussed in Section 3.

2.1 THE HAIFA EQUATIONS

The numerical investigation of mountain waves requires
that the effects of inertia and buoyancy be taken into account.
The two-dimensional time-dependent Boussinesq equations, devel-
oped herein, include these effects in the HAIFA computer code.
The buoyancy effects are due to adiabatic changes of tempera-
ture induced by perturbations of an initially thermally stra-
tified atmosphere. Deviations from constancy of the density
in other terms of the fluid equations, including the continuity
equation, are neglected, giving a set of equations which are
basically valid for an incompressible fluid. The use of the
Boussinesq equations for the investigation of mountain waves,
therefore, is appropriate in that the effects of buoyant sta-
bility is restricted by the incompressibility of the flow.
These equations, as used in HAIFA, are the vorticity equation
derived from the two-dimensional equatioiis of motion, the
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energy equation, and the continuity equation for an incom-
pressible fluid. An outline of the derivation of these
equations follows. (The symbols used in the equations are
defined in the Nomenclature list.)

In the Boussinesq approximation, the momentum equa-
tions in the horizontal (x) and the vertical (z) directions
are:

.- :_o ek ) (2.1)
d 1 9
a%.-agsg-g:g+v-(kvm : (2 2)

For the present, we have neglected the Coriolis terms in this
set of equations.

The incompressible continuity equation in two dimen-
sions is

Ju ow

K#:;.O 3 (2.3)

The vorticity equation used in the HAIFA code is derived using
Eqs. (2.1), (2.2), and (2.3). Kq. (2;1) is differentiated with
respect to z and Eq. (2.3) with respect to x . Consistent
with the Boussinesq approximation, the variation of Po with
height is assumed negligible. Subtracting one from the other
renoves the pressure terms. If one also treats the diffusion
coefficient kv as a constant, the resulting expression is:

d-(n) = + ek (2.9)
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where n is defined as the vorticity component perpendicular

to the x-z plane, Mathematically,

e U _ oW
n ﬁ H .

It is forther possible to modify Eq. (2.4) consistent with the
Boussinesq approximations. The variables p, T and p may
be written as functions of their static values plus a perturba-

tion contribution as follows:
p(x,z,t) - po(z) + p'(X,Z,t) »
T(x,z,t) = T (2) + T'(x,2,t) ,

p(x,2,t) = p,(2) + p'(x,2,t) .

The buoyancy term

can then be written as

1 23p'
oo 5
o
However, for the Boussinesq approximation to be valid, the
density variation p' must depend mainly on temperature,

i.e., the variation of density due to t"» dynamical pressure
is assumed negligible (see Appendix A). Therefore,

(2.5)
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p! = (g-q') T' = - T:'T' . (2.6)

Substituting Eq. (2.6) into Eq. (2.4) and using Eq. (2.3) to
allow the result to be written in conservative form, the
vorticity equation is

FEM + glun) ¢ gz0m) = - =5 e kT (2.7)

Eq. (2.7) is the first of three equations to be solved
in the HAIFA code. The second equation results from the con-
tinuity equation and the definition of vorticity. Defining a
stream function ¢ such that u = 3y/3z and w = -3y/3x, the
continuity equation is automatically satisfied. Further, the
stream function is related to the vorticity through a Poisson
equation of the form

Viy = n (2.8)
The final equation necessary tc complete the descrip-

tion of mountain waves is the energy equation. This equation
expresses the first law of thermodynamics

g%-'l-%g%* ktv*h

for an adiabatic system. For a perfect gas with constant
specific heat and using the hydrostatic approximation in the
dp/dt term, this equation may be expressed by

S - ve e kT, (2.9)
P



q

{

3SR-795

Substituting Eq. (2.5) into Eq. (2.9), the resulting energy
equation is

OT' |, 3 111y + D (wT') = ow o2 2y
W— ﬁu ) ﬁ-(WT)s Wsz—"’ r "’ktVT . (2.10)

Eqs. (2.7), (2.8) and (2.10) constitute the fluid flow
equations integrated in the HAIFA code.

2.2 NUMERICAL APPROXIMATION OF HAIFA EQUATIONS

Eqs. (2.7), (2.8) and (2.10) are written in finite
difference form and integrated numerically. The integration
is accomplished by updating the equations in time for each
variable based on the values at the previous time step or an
intermediate time located between two successive time steps.
Each of these steps will be discussed in turn in this report.
These descriptions include the definition of the grid used und
the location of each variable listed in the equations, the
evaluation of the advection terms in the vorticity and energy
equations, the solution for the stream function from the
Poisson eq. (2.8), and a discussion of the boundary conditions
used in the numerical integration.

2.2.1 Finite Difference Scheme

The basic scheme used to numerically integrate the
HAIFA equations is shown in Figure 2.1. The finite difference
grid used in HAIFA is shown in Figure 2,2. The locations of
the major variables with respect to the grid cells are defined
in the figure.

PR T
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Initial values of temperature,
vorticity, and velocities are
specified. These will be Step 1.
available at time tR for the start
of each succeeding time step.

New values of temperature

and vorticity are obtained Step 2
accounting for the advection P <.
terms in Eqs. (2.7) and (2.10) only.

Temperature anglvorticity are up-
dated to time t"" by accounting for
buoyancy and friction terms using Step 3.
the intermediate values of T § n
obtained in Step 2.

The Poisson equation is solved
for ¢ wusing values of n at Step 4.
n+l
t .

.Yelocities are updated using ¢
values from Step 4, Initial data for
a new cycle are now available for
edit or further calculation be-
ginning at Step 2.

Step S,

Figure 2.1 — HAIFA Scheme Used in Numerical Integration
of Eqs. (2.7), (2.8), and (2.10).

10
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Vi,j+2
§41 Yi,j+1 | T | Yie1,5+1 T
4t |
: vy I Vie1,;
vlJ
¢—-AX—Pp
j-1
i-1 i i+l

Figure 7.2 — HAIFA Finite Difference Grid.

The stream functions arec located at the grid points, the vor-

ticities and temperatures are cell centered and velocities are
centered on a grid line located btetween stream line values.

In this way, the velocities defined in finite difference form

are:

Ve osaq = Yo
= oY _ Yi,j+l ij

(2.12)

ij X AX

11
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2.2.2 The Advection Scheme

The advection of temperature and vorticity in HAIFA
is calculated using either the second or fourth order scheme
of Crowley.(l) The selection of the second or fourth order
scheme is optional and is determined by the trade-off between
accuracy and computing time. The schemes chosen are written
in conservation form and are based on forward time differences
and centered space differences. Test calculations performed
by Crowley indicated that for the same order of accuracy, the
conservation form produced more accurate solutions than the
advection form.

In the conservation form, the time derivative and ad-
vection terms of the vorticity or temperature equation may be
written as

%%+gs((itl+g_z(ltl.s , (2.13)

where ¢ is either T or n and S is the source term.

In two dimensions a splitting technique is used; the
calculational scheme calls for solving a one-dimensional equa-
tion twice, i.e., the net flux of vorticity or temperature is
solved for in the horizontal, the quantity solved for in the
zone being updated due to this flux and the procedure is then

‘repeated in the vertical direction using the partially updated

values. The equation for the flux across the boundary j
written in finite difference form (second order accurate) is

a. a.?
Fj = %% Il(OJ + °j-1) < 'ZJ—(¢j = ‘j'l) (2014)

h . = u, At/4Ax .
where aJ uJ /

12
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“he net change in the variable ¢ in the cell ij due to ad-
vection in the horizontal is then

n+l

R R - TR (2.15)

|
The corresponding fourth order scheme for the flux

across the boundary j 1is
A a
ik ﬁ{Tg’[*"’j RTRVUER ORI
a.?
- ]*‘[37(0j ° Oj-l) - (¢j+1 T ’j_z)]
a,?
- ﬁ‘[(.j 1 oj-l) = (0j+1 < °j°2)]

o‘ ;
v [0y - ey - Gy - o,_zz]} . (2.16)

The numerical stability of these equations is discussed in
Section 2.3 of this report. The accuracy, as discussed by
Crowley, is found by expanding the quantities in Taylor series,
both in time and in space. The result gives the solution of
the variable ¢ at the new time accurate to order At?

in time. The time derivative of the finite difference form

of the differential equation is.thus accurate to order At

in time. The second order scheme, Eq. (2.14), has a trun-
cation of order A4x’ and the fourth order scheme, Eq. (2.16),
is accurate to 4x® in space.

13
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2.2.3 Update of Other Terms in the Vorticity and Energy
Equations
The vorticity equation has two additional terms besides
the advective terms. In general, central differences are used
in the numerical scheme. The buoyancy term

R

o)

is expressed as

T - T
- & i’l\’jux i-1,4 o (@an
%

The diffusion term k 9'n is expressed as

4
ko f0g 301 = 2055 ¢ 0y 50 )

i (ni¢l’j - 2nij + ni,l.j)(%%r) . (2.18)

The energy equation is handled in a similar manner.
The diffusion term ktV’T is expressed as in Eq. (2.18)
with n replaced by T . The remaining term in the energy
equation

aTo
'Ws;'—*r

is calculated using centered quantities. The term in
brackets is calculated analytically from input data and the

14
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velocity is expressed .s an averaged quantity

w +w
v = .EJJ:%____Li ,

2.2.4 Solution of the Poisson Difference Equation by Finite
Fourier Transform

The solution of the Poisson equation by means of
Fourier transform results in a direct (or exact) solution of
the difference equations and their boundary values. In the
current version of the subroutine there are some limitations
on the generality of the solution; the spatial interval Ax
must be constant (see Section 3.3 for variable Az). The solu-
tion must be periodic in the x-direction and prescribed values
of the stream function are to be maintained on the top and
bottom boundaries of the rectangular region. How the hound-
ary is modified from the rectangular shape is discussed in
the following section, -

A second order finite difference approximation to the
Poisson equation 92y = n is obtained by replacing the second
derivative operator by a centered second difference operator.

2 2 = ”
2T 34T I ny S Lk, eeen d (2.19)
(ax)* (az2)? ) j=2, ..., 0.1,
where
% Vij " Vie1,5 - 45t Vi
and

83 Vij = ¥i,je1 " iyt ¥y 5

15
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Boundary conditions are imposed as follows:

At the bottom of the mesh,

¥i,1 "9 ’

At the top of the mesh,

i 5" By : i=1,2,...,1

The cyclic boundary conditions in the horizontal are,

*O,j » *I,j and "l,j = *I*l,j 5 j=2, ..., J-1.,

We introduce an orthonormal base set of functions having
cyclic properties on the index i:

Wi ® /2]T cos 3%51 , I is even
Wi 1.k = YT sin gk : i=1,2, ..., 1.
¥i1® 1//T ,

vi 172 " 1//T cos i ,

These are the finite Fourier functions which have the properties,

I
_2 ik Yig © Ske

i=]1

16
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and the analogous cyclic boundary conditions are valid in the

horizontal. They also have the property that they are
eigenfunctions of the central second difference operator

2 - 212
6x Yik = Ak Yik

where Ak = 2 sin nk/I ., These functions are complete func-
tions on the interval i = 1,2, ,,., 1 . Consequently,
an arbitrary function fi on this space can be represented

I

£y = Z 8y Yik

k=1

where

ak'zfi"ik 5

i=]

We are now ready to consider Eq. (2.19) from the point

of view of Fourier transformation. The vorticity and stream
function are represented as Fourier series as follows:

1 P I
njj ® z byj Wik »  Where by, - 2 Nij ik
k=1 j=1

I I
wij . Z akj wik » Vhe!‘e ‘kj - iE Wij wik .
s]

17

(2.20)
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Substituting into Eq. (2.19) we obtain
I 2 2
o (ax)? (az)?/ j
Multiplying by Wig and summing over i gives
A2 82 =2, ..., J-1
Iy P A 8 = by Pt ’ (2.21)
(ax)*  (az)? i=1,2, ..., 1.
The values of 31,2 and 23,1 required by Eq. (2.21) are
obtained from the boundary values
I
31." - Zai Wig and
i=]
I (2.22)
‘J,z'zai Yig
i=1

In Eq. (2.21) the value of the wave number, L, appears
only parametrically. For each value of £ there is a tri-
diagonal equation having fixed values at the end points of the
j-interval.

We summarize the procedure for obtaining the direct
solution of the Poisson equation, Eq. (2.19), by Fourier trans-
form:
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(1) The vorticity and the top and bottom boundary
values of the stream function are subjected to Fourier trans-
formation to obtain

I
bjy ® 2 Njj Yik

(2) The Fourier components of the stream function are

obtained by solving the tridiagonal system of equations, Eq.
(2.21), for ajz.

(3) The stream function itself is obtained by Fourier
synthesis

I

¥ij ~ E 359 Wig

2=1

The quantity I must be even. In order to take maxi-
mum advantage of the efficiency of the Fast Fourier Transform,
the quantity [ should also be a power of 2,
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2.2.5 The FFT Solution of the Poisson Equation Having Non-
Rectangular Boundaries

In order to represent a mountain within the computa-
tional grid it is necessary to depart from rectangular bound-
aries. A modification of the solution algorithm using the FFT
is necessary to take account of the specified values of y on
the mountain contour. The procedure for carrying out this
modification of the direct soiution of Poisson's equation on
an irregular region has been described by Buzbee, et.al.(z)

We consider the case in which there are p internal
grid points on which the potential is to be specified. These
points ccastitute the adjacent mesh points lying along the
boundary of the mountain which will be assigned the same value
of potential (usually zero) as the lower boundary. The first
step is to precalculate the stream function contribution at
each of the p points of unit vorticity located at each of
the points. The solution is then obtained ., solving Poisson's
equation twice for each cycle. First, Poisson's equation is
solved with arbitrary vorticity on the boundary points. The
difference between the obtained and desired values of the
stream function at e. th of the p ypoints is used to obtain
the corresponding vorticity increments through application of
the precalculated matrix. A second solution of Poisson's
equation using the incremented vorticity field gives the final
value of the stream function within the calculational region.

2.2.6 Description of Poisson Solver Routines

This section describes the subroutines currently used
in the HAIFA code to solve the Poisson cquation in x-z geometry.
The method of solution employs a Fourier transform in the
x-direction, solving the resultant set of one-dimensional dif-
ference equations (one for each wave number) by Gaussian
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elimination in the z-direction and performing the inverse
x-direction Fourier transform to obtain the solution._ The
Cooley-Tukey Fast Fourier Transform (FFT) technique

is employed (subroutine COOTUK) with some pre- and post-
processing of the data for efficient utilization of the al-
gorithm. In the current version the dependent variable (the
stream function ¢ in the HAIFA context) is assumed to have
cyclic boundary conditions in the x-direction and fixed values
at che top and bottom of the grid.

At the beginning of each new calculation, there are
references to subroutines which are used only once in each
problem. These are called SETUP and OBSET.

SETUP -- This entry references an internal subroutine SET,
whose function is to define certain index parameters and re-
quired data arrays that are used throughout the calculation
by the Poisson solver.

OESET -- This subroutine is called only when internal boundary

conditions are to be applied. Suppose there are p internal
points required to have stream function values w:, w:, cos ¢;-
This subroutine computes a p X p matrix C which has the fol-
lowing property:

a unit vorticity is placed in the posi-
tion of internal boundary point j. The value
of the independent variable (vorticity) is
assumed to be zero at every other point. The
Poisson equation solver XYPOIS (see discus-
sion below) is called and returns the influ-
ence of that particular unit vorticity on all
the other internal boundary points. These
influences are put into row j of matrix C.
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This procedure is continued until all p in-
ternal boundary influences have been computed.
Finally, subroutine OBSET forms and stores

the inverse matrix C~!,

The controlling subroutine for the Poisson equation
solution is named LAPLAC (for the Laplacian symbol V2).
This routine is responsible for the solution to both standard
boundary condition cases and problems which include internal
boundaries.

Each cycle, subroutine LAPLAC averages the cell-
centered HAIFA vorticities to provide node-centered vortici-
ties. Then the Poisson equation solver XYPOIS is called to
provide the updated values of the stream function., In the
case of internal boundaries, one more step is performed in
subroutine LAPLAC. Upon the first return from solving the
Poisson equation, each internal boundary has a value w;,
i=l, ... ,p which in general is not the required value w;.
A ector Ay of the differences w; - w; is formed. Then,
using the inverse matrix C™! formed in subroutine OBSET, one
may compute the required modifications Aq; to the values of
the independent variable at each of the p internal boundary
points from

Ay Aq

o 1 o1
ci{- ) -

Ay, Aq,,

The independent variable is so modified, and the XYPOIS
package is called once again. The solution returned now con-
tains the correct values for the internal boundary points as
well as the other grid points, It remains to discuss the sub-
routine XYPOIS,
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XYPOIS -- This entry is used every calculational cycle to
carry out the solution of Poisson's equation. It contains
as an argument the values of the inhomogeneous term (here,
vorticity) in the interior (nodal) points of the grid, and
the fixed values of the dependent variable (here, the
stream function) at the top and bottom of the grid. XYPOIS
references four internal subrcutines:

(1) FFANL (fast Fourier analyzer), which is respon-
sible for carrying out the x-direction transform of vorticity
into Fourier components. It processes two rows at a time,
so an uncoupling of the row components is required upon re-
turn from the FFT routine COOTUK,;

(2) GAUSS, which is responsible for solving the re-
sulting z-direction tridiagonal equations for the transform
of the dependent variable (see Section 3.3.1);

(3) FFSYN (fast Fourier synthesizer), which is the
inverse of FFANL, is responsible for restoring the Fourier
components to the new values of the independent variable by
another call to subroutine COOTUK. These values, represeunt-
ing the solution to the Poisson equation, are returned to
the calling routine (subroutine LAPLAC) in the array contain-
ing the original argument list; and

(4) COOTUK, which carries out the Cooley-Tukey fast
Fourier transform.

2,3 STABILITY ANALYSIS

A numerical stability analysis of the advection terms
in the vorticity and temperature equations has been completed
by other researchers. Among them, Crowley(1’4) did a complete
analysis for the scheme presently being used in the HAIFA
code. The results obtained by Crowley indicate that both his
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second and fourth order scheme are stable for all wave num-
bers if

ult

x| <1

Further, the fourth order conservation scheme being used in
HAIFA is stable for (uAt/Ax) < 1.S.

As indicated by Crowley, the schemes both result in
amplitude dz:ping and phase lag. For long wavelength dis-
turbances the damping and phase errors are appreciably smaller
for the fourth order scheme than for the second order. Com-
parison tests with a typical mountain wave problem indicated,
however, that the differences between fourth and second order
solutions are not large. Most of our calculations have been
performed with the second order scheme. The criterion
built into the HAIFA code is more stringent than any of those
noted above, i.e.,

ult
Ax

< 0.8 .,

A stability criterion also has been estabiished for
the diffusion terms, however, in all problems calculated for
this research, the diffusion coefficients are set to zero and
thus these terms play no part in the solution,

One unstable region was found using the above cri-
teria in computing the uniform velocity problem discussed in
Section 4.3. The details of the iustability and the new
criteria developed for that problenm are also given in that
section.
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2.4 BOUNDARY CONDITIONS

The initial value problem solved using the HAIFA code
requires initial temperature, verticity and stream function
distributions. This is accomplished by prescribing a value
of the stream function which is constant in the horizontal
direction and which gives the desired horizontal velocity
distribution as a function of the vertical coordinate. The
vertical velocity component is set to zero. The vorticity
at each point in the grid is calculated analytically using
the definition

= ou . v .
n = 3>, since 3= is everywhere zero.

The temperature distribution is specified as being horizontal-
ly stratified with a lapse rate which may vary with altitude.
It is also possible to simulate inversions,

At the beginning of the calculation, with the flow
already established, an obstacle is placed in the stream by
setting the lower surface streamline to coincide with the
mountain surface, A rigid lid (constant streamline) is im-
posed on the upper boundary of the problem. Figure 2.3 indi-
cates these boundary conditions in graphical form.

The boundary condition imposed at the sides of the
grid assumes the flow to be cyclic, i.e., the stream function
at each vertical grid line j on the left side of the grid
is set equal to the corresponding stream function at the
right side of the grid. Mathematically, this can be ex-
pressed as wlj = wn+1,j . A graphical explanation of this
boundary condition is also given in Figure 2.3.
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Figure 2,3 — Schematic of HAIFA Boundary Conditions.
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One further boundary condition is necessary to obtain
the transient solution. The vorticity equation requires that
the temperature gradient in the x-direction be specified at
the cell center bounded by the obstacle. This requires a
value for the temperature perturbation on the obstacle
boundary. The assumption is made that the air immediately
next to the mountain has risen from the bottom of the grid.
The temperature of the air alongside the mountain is thus
given by

T. = To -~ Te2

where

T, = the temperature along the vertical
wmountain boundaries

T_ = the temperature at ground level

I = the dry adiabatic lapse rate

z = the distance above ground 1level.

Since the initial temperature profile (Ti) is given as
an analytic function of z, the temperature perturbation along
the mountain is

Tﬂ'] b2 TO - r.z - Ti .

Referring to the example ot a two-cell thick mountain in the
figure below, 3T'/3x at the cell centers adjacent to the
obstacle are calculated as
T! « T!
i i-1
BT{ Té -

oX Ax
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At cycle zero (time equal to zero), these boundary con-
ditions are then used to determine the new distribution of
streamlines within the calculational grid. This comp’etes the
required information to start the computation.

2.5 HAIFA CODE DESCRIPTION

A flow chart giving the calculational sequence of the
HAIFA code is displayed in Figure 2,4, A description of how
problems are generated and the major subroutines within the
code is presented below.
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Figure 2.4 - Flow Diagram of HAIFA Code.
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2.5.1 Initiating A Calculation

There are two methods for initiating a calculation:
generating a new problem, and restarting a partially completed
calculation from a data tape. These are controlled by sub-
routine INPUT.

Generating a New Problem -- Subroutine INPUT reads all
input data and sets up several constants which will be used
in the calculation. The initial streamline distribution is
computed from a series of input parameters, MT , DT1 , DT2 ,
DT3 , DT4 , and ZETA such that

MT (MT+1)

v(z) = DT1 + DT2+2"" + DT3-z

+ DT4+exp(-ZETA+z) .

These parameters define the horizontal velocity distribu-
tion

u(z) = %% « MT-DT2-2MT-1) 4 (MT+1).DT3.MT

- DT4-ZETA-exp(-ZETA-+2)

The initial vorticities are found from differentiating the
above expression with respect to z , i.e., n = 3u/9z since
wv/9x 1is everywhere zero at time equal zero.

The initial temperature distribution is set in a
similar fashion using the input parameters KT , AT1 , AT2 ,
AT3 , AT4 , and ALPHA.

KT (KT+1)

T(z) = AT1 + AT2.2"" + AT3.:z
+ AT4+exp(-ALPHA-z) .
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Internal Boundaries — The input variable NOBS defines
the number of internal points which are to have fixed stream-
function values. A series of data cards specifying the grid
points and the associated ¢ values are read if NOBS >~ 0 .

Such internal boundary points are used to define grid
obstacles, which are outlined by a series of connected points.
Typically, the fixed value of { assigned to the obstacle
points is the lower boundary streamfunction value. The re-
quested initialization of the streamfunction, vorticities, and
velocities in the case of internal boundaries is handled by
subroutine OBSET.

Restarting A Calculation — The option %o restart a
calculation is keyed by the input parameter RESTRT. If it
is non-zero in value, the data tape is scanned in subroutine
RTAPE until the cycle requested by input parameter ISTART is
found. The values of the necessary calculational variables
of the requested cycle are then read, and the computation is

continued.

2.5.2 Major Subroutines in the Main HAIFA Calculational Loop

UPDATE -- UPDATE is used to solve the conservative equations
for vorticity and temperature. Crowley's second order or
fourth order scheme is called from this subroutine to calculate
the advection terms. This scheme is described in Section 2.2.2
of this report.

LAPLAC -- The Pcisson equation relating the stream function

and the vorticity is solved using this subroutine as the con-

trolling program. The details of the Poisson solver are given
in Section 2.2.4.
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VELOC -- The updated stream function values are differenced
in z-space to provide the horizontal velocity field u , and
in x-space to provide the vertical velocitv field v.

PRTTST -- This subroutine defines the type of output required
in each cycle, viz, plots, large edits, and/or data dumps on
tape are available options with this program.

TIMSTP -- The TIMSTP subroutine calculates a time step to

be used in the calculation limited by the numerical stability
criterion. The stability criterion is outlined in Section 2.3.
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3. MODIFICATIONS TO HAIFA

The HAIFA equations described in the preceeding sec-
tions are limited in that the formulation has been simplified
both from the mathematical and physical points of view. In
Section 3 we discuss several investigations to generalize both
the mathematical and physical aspects of the code. The three
programs described below are currently being tested and are
approaching operational status. Additional features are to be
incorporated in the latter part of the contract; they are dis-
cussed in Section 6.

3.1 COMPRESSIBILITY

3.1.1 Derivation of the Differential Equations

The use of HAIFA for the investigation of mountain
waves is appropriate in that the effects of buoyant stability
and dynamics are taken into account, but its applicability is
restricted by the incompressibility of the flow. In particu-
lar, if the height of the mountain range is comparable with
the atmospheric scale height there will be effects induced by
the expansion experienced by an air packet in being lifted over
the mountain,

The effects of :compressibility are to be determined
through the use of a new code developed with which problems in-
cluding this effect may be run and the results compared with
HAIFA calculations. Several objectives were sought in arriving
at a method of accomplishing this task. They are discussed
below.
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(1) Sound waves should be excluded from the numerical
solutions in order to permit efficient calculations having time
intervals comparable with material displacement through a space
interval.

(2) Compressibility effects should be retained.

(3) The scheme should be formulated in physical vari-
ables to facilitate addition of new physical effects (such as
Coriolis force or water vapor). '

(4) Conservative difference equations should be sought.

(5) The scheme should retain a mathematical form simi-
lar to HAIFA to make programming and check-out as speedy as
possible,

The “anelastic" equations of Ogura(S) meet some of the above
criteria and will be compared further below. However, the
anelastic equations do not allow an arbitrary atmospheric
stratification, do not include the change in density due to
temperature perturbations and are formulated in problem-
dependent variables. These limitations.can be avoided, as
indicated below,

The equations for inviscid fluid flow on a non-
rotating earth (additional terms will be discussed later) are
written in conservative form as follows:

P YL L, (3.1)
N !
R
Jow , Joww , Jovw , Zew , 2. g . (3.4)
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% = %1 and the energy equation can be
dT _ _1
a—t' ‘pr t . (3'5)

nviscid non-rotating motion of a perfect

tions of motion given by Eqs. (3.1)

der the equations in two spatial dimen-
and down-wind directions, assuming that
ce of any quantity on the y-direction,

Q

L (3.6)

22“ + gQU¥ + ggwu + %% =0 , (3.7)
dpw , Jpuw | Bpw” , Bp . g, (3.8)
g% = a%; %% , P = pRT . (3.9)

We consider
an initially steady
u(z,t=0), T0
initial conditions p

u
0

are related to each
tion,

the problem in which the mountain perturbs
=0,
P, = P(z,t=0), the normal

state of the atmosphere,
T(z,t=0),
reviously discussed.

w
o

These initial values
other through the static atmosphere equa-
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ap gp 9 Inp
55" 8, " "R OT  3p—— - - (3.10)

(o] o

The transient solution is obtained by solving the
equations of motion starting with the initial values and im-
posing boundary values on the motion. In order to eliminate
sound waves from the transient solution it is sufficient to
set %% = 0 in Eq. (3.6). The resulting equation,

dpu Ipw _
L.+ 22 o , (3.11)

is in suitable divergence-free form for the introduction of

a solinoidal function. Since Eq. (3.11) is no longer suffi-
cient to determine how the density changes, it is necessary

to introduce an additional equation based on an approximation,
We assume that the density can be determined at every position
from the perfect gas equation of state in which the pressure
takes the value associated with the static atmosphere, Py »
through the relation

P=RT ° (3.12)

The temperature equation can be written in terms of
the deviation T' of the temperature from its static value
(T = T° + TY) .

In addition, the temperature equation can be reformu-
lated so that the advection term assumes a conservative form.
Expanding the left-hand term of Eq. (3.9)
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dT _ a7 st . a1+ 9T,
at " 3¢ Y Uyx t Wz * Vgz ’

multiplying by p and adding Eq. (3.6 multiplied by T' ,
we obtain

dT
3pT! 9pT'u 9pT'w o_1 d
3t ' Ix * 3z M D) E; H% ’

Assuming the pressure to have its static value in the right-
hand term of Eq. (3.9),

d dpo dpo
il Iz T TWeP,

the energy equation becomes

aT
3pT! 'y, 3pT |
o i R (3.13)

where we have assumed

from Eq. (3.12).

The "anelastic' equations of Ogura and Phillips also
take account of compressibility effects in the atmosphere and
it is of interest to compare the above devclopment with them.
The anelastic equations are bacs:d on several assumptions:

37



3SR-795

(1) The potential temperature is almost con-
stant; deviations from constancy are
small.

(2) The density appearing in Eq. (3.11) is
that associated with a neutrally strati-
fied atmosphere.

(3) The potential temperature appearing in
the momentum equations is that of the
neutral atmosphere, i.e., it is constant.
This assumption corresponds to using a
neutral atmosphere density in the ad-
vection terms of Eqs. (3.7) and (3.8).

The treatments of the buoyancy term of the momentum equations
and the energy equations are the same in the two schemes.
Consequently, the proposed scheme is more general in two
principal respects; the initial stratification of the atmos-
phere can be arbitrarily specified, and the effect of temp-
erature changes in the atmosphere are reflected in all of the
density terms.

The system of compressibility equations, Eqs. (3.7},
(3.8), (3.11), and (3.13), have a form similar to the
Boussinesq equations, and can be solved in a similar manner.
From Eq. (3.11) a stream-function-like quantity ¢ can be
introduced:

pu = g%- , pW = - %% . (3.14)

In terms of a vorticity-like function ¢ ,

(-3

9
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yielding the same Poisson equation as for the Boussinesq
approximation,

2 2
;=g?$+37$ . (3.16)

The prognostic equation for ¢ 1is obtained by cross differ-
entiating Eqs. (3.7) and (3.8) and subtracting.

14 d d d [d¢ du d¢ Ju
3t * ax(Ue) * 5z(ve) ’~§Y(§% 3% 52 s'z')

9 9¢ oW ¢ aw) _ 3dp _ _ p 9T!
’H(F%\H’zﬁ)‘gﬁ'% R L P

(3.127)

Eq. (3.17) replaces the vorticity equation of the
Boussinesq equations, differing principally in having the
additional terms containing the derivations of ¢, u and w.

3.1.2 Method of Numerical Solution

The system of compressibility equations is seen to be
very similar to the HAIFA equations, and in fact only nominal
modifications to the HAIFA code were required to produce a
compressible low-speed flow code.

Generating Initial Conditions — As with HAIFA, the
values of uo(Z) and To(z) are specified by input to the
code. In addition, the initial surface pressure Po(z=0)
must be specified. The remaining initial pressures are found
using the relation of Eq. (3.10),

. Z
P_(2) = P_(2=0) exp - &f T—(‘szz

0 (0]
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The initial density profile then follows from

P (2)
po(2) = RT Tzy

0
The stream-function-like quantity ¢ is formed by integrating

$ =0, (2) u (2)

and the vorticity-like quantity ¢ 1is initialized from the
non-zero term of Eq. (3.15),

[ = Jpu
0z

(as in HAIFA, there is no x-dependence of any quantity initially).

Modification of Advection Scheme — The quantities to

be advected in the system of compressibility equations are
t, Eq. (3.17), and (pT'), Eq. (3.13). Since the equation of
continuity is in the form

Jpu + dPW _ 0
X 3z ’

Crowley's second order scheme for advection was modified to
use {(pu) and (pw) as pseudo-velocities.

This code is now complete and problems will be run in
the next six months in order to compare with HAIFA results,
In addition, a problem will be calculated using a completely
compressible code,
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3.2 MOISTURE

3.2.1 Derivation of Equations

In this section the effects of moisture on the equa-
tions for Boussinesq fluid flow are discussed. Frequently,
atmospheric water in the form of water vapor, cloud water,
and precipitation will have important effects on tne charac-
teristics of gravity waves caused by mountains. Lee waves
are frequently accompanied by clouds which can be expected to
modify the stability of the air through the presence of the
latent heat of condensation which the cloud water adds to
the air. In addition, there are effects discussed by
Orville(6’7) of up-slope winds due to high-level heating
and evaporation, but these are not of primary interest in
our investigation. Consequently, the terms resulting in
changes of stability of the air in which clouds are forming
are of primary interest,

Radiative heating and cooling of the air has not been
taken into account in this discussion, even though the bound-
ary condition on moisture is affected by it, Boundary layer
effects at present are largely omitted from HAIFA but are
considered in Appendix E. It will be beneficial to incorpo-
rate them, together with radiative terms, at a later stage of
the code development work.

The HAIFA equations are to be modified to include the
effects of moisture by incorporating the following major
changes:

(1) the momentum equation is modified by

’ including the effects of moisture in
the buoyancy term,

(2) the equation of state for air is
changed to include moisture,
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the energy equation is modified to in-
clude energy changes equivalent to the
latent heat of water being given to or
taken from the air,

a new equation is added to account for
the conservation of moisture in the air
excluding rain water, and

a conservation equation is included
which expresses the rainwater content
in the atmosphere including sources and
sinks at the boundaries.

An outline of the derivation of the equations is given below.

The momentum equations and the eqdation of state for

a system with moisture are

These equations have been derived by Orville, and
Ogura and Phillips among others. The energy equation is
now derived from the first law of thermodynamics in order

du 1 23
i -

o)

P = PRT(1 + Er) .

to redefine some terms used previously, i.e.,

Tds = dh - %2 .
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For an adiabatic system, this can be written as

dh _ 1dp_ L(3P , .op , .9p)
dt  p dt p(at M TR T (3.22)

In the Boussinesq approximation, the first two pressure terms
in brackets are zero and the third term is equivalent to
-wgp (assuming the hydrostatic approximation),

. owg . (3.23)

The enthalpy changes will include energy changes due
to both advection of the temperature and latent heat being
released or absorbed as the moisture in the air changes phase,
The energy equation can thus be expressed as

oT oT aT _ _wg _ _
Tt’“ﬁ?“"ﬁ' C—: wl
where
~ Lr
T=T+r.
P

Expressing the temperature as T = To + T' where To is

a mean value which is constant and T' represents all vari-
ations of the temperature from this space averaged quantity,
i.e.,

Ter +T e =T +1 | (3.24)
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Eq. (3.23) becomes

1"
%%_ + u%;: + wgzn = -wl .

A diffusion term may be included in the above equation as

+ktV’T" where kt is a constant coefficient.

The vorticity equation, derived from the momentum
and continuity equations, is

3 LWl W3l g1 e+t T(e/e,)

9L 9L
c,® 3

X 3; 9X .

+Lg
Py

Making the Boussinesq approximation and the further restric-
tion that To/(To + T') 1, the equation is

n , ,on, .20 . _ a7
3t T Ysx * Y3z %; 1+ Lo * zr) 09X

oL oL
L or c r
*%;c;(l*‘c”r)ﬁ*gsx—*.sx—

Eqs. (3.25) and (3.27) and the Poisson equation relating the

stream function and the vorticity replace Eqs. (2.7) and
(2.10) in the basic HAIFA scheme.

The equation of water vapor conservation is obtained
by deriving equations of total water conservation and rain
water conservation and tzking the difference between them.
The total water conservation equation may be obtained by
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equating the sum of the time derivative of the total water
plus the diffusion of the water carried as cloud water and
moisture to zero. Mathematically, this is expressed as

T(pQ) = -Ve (rrV) - V‘("”cv)

[ 5 X-¥)

- v p/(V-VD)R.E dD
+ kv? p(r+e.) . (3.28)

The integral term on the right side of the equation repre-
sents rain water advection and fallout as a function of
droplet diameter. Several authors including Orville, Kess-
ler,(s) Srivastava,(g) and Armason, et.al.(lo) have derived
expressions for water drorlet formation and precipitation in
the atmosphere. At this stage in the development of HAIFA
with moisture, we have elected to program the conservation
equations a:s derived by Orville with one or two exceptions
noted below and will modify these equations as we derive or
discuver better prescriptions for each of the terms.

The final equation for total water conservation may

be expressed as

Q . _yy. t L4 Xp2
5% = VVQ R gt Vet pV p(2 *r)
9L
1l 3p 1 dp %
+ zrvt + > b + zrvt 5 5 Vt % - (3.29)
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The last two terms on the right side of Eq. (3.29) are ignored
by Orville. At the present stage of our analysis, the magni-
tude of these terms with respect to others in the equation are
is unknown; further study will be made to justify retaining
them.

The final equation required to complete our analysis
expresses conservation of rain water in the atmosphere.
The change of the rain water with respect to time is equal to
the advection and fallout of the droplets plus a source term
which expresses the conversion of cloud water into rainwater,
the growth of rain drops through coalescence, and the evapo-
ration of rain falling through unsatuiated air. The production
terms also have been derived by the authors already noted. The
most satisfying expression seems to be that derived by Orville
or Arnason. For consistency, our original equations for the
production term will be equivalent to those arrived at by Or-
vilte. Modifications will be made where we obtain an im-
proved description of the processes being undergone by the
water, The equation may be expressed as

rog e tleae e MVeae
ot T 9X P 9X r 92 P z
L L L Y
T T T T
“Vx Vi T Vesr cVews C P §oc)

This equation, Eq. (3.30), includes variations of o, Lr, and

Vt with respect to tne horizontal direction. Orville has ig-
nored these, but for completeness and until we can substantiate
that they are negligible, they will be carried in our studies.

The production ternm, P. , is described in detail in Appendix B.
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The equation for conservation of water vapor is found
by subtracting Eq. (3.30) from Eq. (3.29). The result is

§-9+V-v-k v*-zav‘-p (3.31)
t q QVq r 9x r ° ’

Eqs. (2.8), (3.25), (3.27), (3.29), and (3.31) constitute
the complete set of equations to be solved in HAIFA with
moisture.

3.2.2 Difference Equations

The difference equations used in HAIFA with moisture
are formed in an identical manner as those in the basic HAIFA.
All moisture terms are cell centered quantities. The time
differences are taken in the forward direction, the advection
terms are treated by Crowley's schemes and all other terms are
centered in space through appropriate averaging. Since this
version of HAIFA is not thoroughly checked out at the time of
tliis report, the finite difference equations will not be pre-
sented here. A complete listing of these equations will be a
part of the annual report under this contract.

o d) VARIABLE ZONING IN VERTICAL DIRECTION

The modifications to the basic HAIFA code that will
enable it to operate with a mesh of variable spacing in the
vertical direction are examined in this section. This modi-
fication affords the ability to resolve more finely certain
areas without excessively slowing the computation by re-
quiring fine zoning throughout the g:id. Modifications to
two routines of the code are necessary. They are the Poisson
equation solver, and the vertical advection subroutine. Each
modification is discussed below.
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3.3.1 The Poisson Solver

The use of the Fast Fourier Transform in the horizontal
x-direction imposes the limitation that the spatial interval,
Ax , be constant. In the vertical direction, however, the
solution of the Poisson equation is obtained by Gaussian elim-
ination and is not limited to a constant spatial interval.

The Gaussian elimination subroutine of POISPK solves
a system of difference equations approximating

.%;¥ ay=Q . (3.32)

The solution of thise equations is briefly outlined below:

The finite difference form of Eq. (3.32)
may be written as a tridiagonal system

Aj ¥i41 *B; ¥; *C vy, =D (3.33)
Letting
Vi = Ej ¥547 * G5 (3.34)
which implies
Vi-1 = By ¥ * 65 o (3.35)

and substituting into the tridiagonal sys-
tem, the coefficients E; and Gi may be
expressed as
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A

E. = -
i R rGE,

G

e Sl s O
i B+ E,

The finite difference form of Eq. (3.32)
for constant vertical zoning is

wi...l - [2 + G(AZ)’]wi + wi_l
(az)?

Q; -

and the coefficients Ai 5 Bi , C. , and
Di are thus equivalent to

Ay = 1/(82)

By = -a - 2/(Az)*
¢; = 1/(az)*

D; = 4

Using these coefficients, Ei and Gi can
be calculated and thus the y; may be

solved for recursively.

With variable zoning the finite difference form of
Eq. (3.32) becomes
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Yieg ~ V3 V3 " Vi
Az, Az,
i R L T (3.40)
Azi + Azi_1
7

where the location of y and Az are shown below,

The coefficients A, , B, , C. , and Di are now equivalent
to

Ai = 1/( zi(Azi + Azi_l)/Z)

By =-2/(Bz; Bz ) - @

(3.41)

C. = 1/(Az.;

i j-1 (825 *+ 8z; 4)/2)

Dy = ¢4

The values of Ei and Gi are computed using the above
coefficients and wi is computed in the same manner as indi-
cated above by Eq. (3.35).
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3.3.2 Vertical Advection

The advection schemes discussed previously are valid

for uniform zones only. The equivalent scheme for variable

3SR-795

size zones is derived below for the Crowley second order
scheme. It has been incorporated into a version of HAIFA

which is currentliy being tested.

be considered at a later date.

The fourth order scheme will

The one-dimensional advection equation in conservation

form may be written for flow in the z-direction as follows:

where ¢ is a variable representing the quantity to be ad-

g%+%?(v¢) =0 ,

(3.42)

vected. Only the one-dimensional equation need be considered

due to the splitting technique used in HAIFA,

In finite difference form, Eq. (3.42) is

J

¢r.1*1 =

n
%

J

3 v SOTPIRNCORN

The term A(vé) . requires the flux across the boundary of

the j cell (see figure below).
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The flux at the j+1 boundary may be expressed as Vj+i o . R
where ¢, reprusents the value ‘of the variable 4 at that o
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4. TEST PROBLEMS

Several problems have been calculated using the basic
HAIFA code. The results of each are presented in this sec-
tion and comparisons with other results are made where pos-
sible. An edit routine to determine the momentum flux
(wave drag associated with gravity waves) was written and
is described in deta11 in Appendix C. Y R

“w v i

Table I summarizes the 1n1t1a1 cond1t1ons used for
each problem. The boundary conditions in each case were £
those described in Section 2.4 of this report. The grid -{%
size consisted of 35 vertical cells by 64 horizontal cells, :

| i |

The atmospheric and horizontal velocity conditions

4.1 SINGLE WAVE

to produce a single gravity wave were arrived at using tke
results presented on two-dimensional mountain lee waves by
Palm and Foldvik.(ll) They had established that if the
quantity

S _123% .
u? ~ u 9zZ

where S 1is the stability of the atmosphere, has a value
at the ground level which is at least 2.5 times as large as
the minimum value (usually located 7-10 km above the ground),
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Figure 4.1 — Single Wave Velocity Profile.
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Figure 4.2 — Two Wave Velocity Profile.

56



3SR-795

the wave motion in the lower troposphere depends only on the
wind profile and the stability. This condition is almost
always satisfied when mountain waves occur. A diagram giv-
ing the expected wave lengths of lee waves under various
stability and wind profiles was presented. In particular,
regions of one and two waves were indicated. Using this
diagram, a single wave of approximately 16 km in length was
predicted for a lapse rate equal to one-hr1f the dry adiabatic
value (see Figure 4.3), and the exponential velocity profile
shown in Figure 4.1.

The numerical results calculated using HAIFA are
shown in Figures 4.4 through 4.7 as streamlines and vertical
velocity contours at several times up to 1-1/4 hours. The
measured wave length from Figure 4.5 or 4.7 is approximately
15 km. As can be observed from the results, only one wave
did form during the time the problem was run. The cyclic
boundary condition prevented any further computation due to
disturbances created by the obstacle in the flow stream
being introduced into the main flow upstream of the mountain.
Some interference with the upper boundary positioned at
10.9 km may also be seen at the latest times.

The momentum edits u'v' (see Appendix C) located
one cell or 312.5 meters above the mountain top are shown
in Figures 4.8 and 4.9 for various lengths used in obtaining
the horizontal averages. The qualitative result obtained
from these figures indicates a decrease in the edited quan-
t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>